解説

(1)
$$|\overrightarrow{OA} + \overrightarrow{OB}| = 1$$
 の両辺を平方して $|\overrightarrow{OA}|^2 + 2\overrightarrow{OA} \cdot \overrightarrow{OB} + |\overrightarrow{OB}|^2 = 1$ $|\overrightarrow{OA}| = 1$ であるから $2\overrightarrow{OA} \cdot \overrightarrow{OB} + |\overrightarrow{OB}|^2 = 0$ …… ① また, $|2\overrightarrow{OA} + \overrightarrow{OB}| = 1$ の両辺を平方して $4|\overrightarrow{OA}|^2 + 4\overrightarrow{OA} \cdot \overrightarrow{OB} + |\overrightarrow{OB}|^2 = 1$ $|\overrightarrow{OA}| = 1$ であるから $4\overrightarrow{OA} \cdot \overrightarrow{OB} + |\overrightarrow{OB}|^2 = -3$ …… ②

①, ② から
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = -\frac{73}{42}$$
, $|\overrightarrow{OB}|^2 = 3$

$$|\overrightarrow{OB}| > 0$$
 であるから $|\overrightarrow{OB}| = \sqrt{\frac{7}{3}}$ また $|\overrightarrow{AB}|^2 = |\overrightarrow{OB} - \overrightarrow{OA}|^2 = |\overrightarrow{OB}|^2 - 2\overrightarrow{OA} \cdot \overrightarrow{OB} + |\overrightarrow{OA}|^2 = 7$ $|\overrightarrow{AB}| > 0$ であるから $|\overrightarrow{AB}| = \sqrt{\frac{\pi}{3}}$

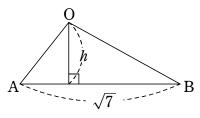
(2) $\overrightarrow{OA} \ge \overrightarrow{OB}$ のなす角を θ とする.

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = -\frac{3}{2}$$
 から $|\overrightarrow{OA}||\overrightarrow{OB}|\cos\theta = -\frac{3}{2}$ よって $\cos\theta = -\frac{\sqrt{3}}{2}$ $\sin\theta = \sqrt{1 - \left(-\frac{\sqrt{3}}{2}\right)^2} = \frac{1}{2}$ であるから、 $\triangle ABC$ の面積は
$$\frac{1}{2}|\overrightarrow{OA}||\overrightarrow{OB}|\sin\theta = \frac{\sqrt{^{\dagger}3}}{^{\dagger}4}$$

O から辺 AB に下ろした垂線の長さを h とする.

$$\triangle OAB = \frac{1}{2} |\overrightarrow{AB}| h = \frac{\sqrt{7}}{2} h$$

よって $\frac{\sqrt{7}}{2} h = \frac{\sqrt{3}}{4}$
ゆえに $h = \frac{\sqrt{\frac{5}{7}} 21}{\frac{5}{14}}$



(3) Pは O を中心とした半径 $\sqrt{3}$ の円周上を動く. P から AB に下ろした垂線の長さが最大となるのは, 右の図より, P が直線 AB に関して O と同じ側にあり垂線が O を通るときであるから, その最大値は

$$\sqrt{3} + \frac{\sqrt{21}}{14} = \sqrt{3} \left(1 + \frac{\sqrt{57}}{2414} \right)$$

このとき、Sも最大となるから最大値は

$$\frac{1}{2} \times \sqrt{7} \times \sqrt{3} \left(1 + \frac{\sqrt{7}}{14} \right) = \frac{\sqrt{3} + 2\sqrt{9921}}{\sqrt{4}}$$

